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Abstract	11	

Evaluating	and	attributing	uncertainties	in	total	column	atmospheric	CO2	12	

measurements	(XCO2)	from	the	OCO-2	instrument	is	critical	for	testing	hypotheses	13	

related	to	the	underlying	processes	controlling	XCO2	and	for	developing	quality	flags	14	

needed	to	choose	those	measurements	that	are	usable	for	carbon	cycle	science.	15	

Here	we	test	the	reported	uncertainties	of	Version	7	OCO-2	XCO2	measurements	by	16	

examining	variations	of	the	XCO2	measurements	and	their	calculated	uncertainties	17	

within	small	regions	(~100	km	x	10.5	km)	in	which	CO2	variability	is	expected	to	be	18	

small	relative	to	variations	imparted	by	noise	or	interferences.			Over	39,000	of	19	

these	“small	neighborhoods”	comprised	of	approximately	190	observations	per	20	

neighborhood	are	used	for	this	analysis.	We	find	that	a	typical	ocean	measurement	21	

should	have	a	precision	and	accuracy	of	0.35	and	0.24	ppm	respectively	for	22	

calculated	precisions	larger	than	~0.25	ppm.	These	values	are	approximately	23	

consistent	with	the	calculated	errors	of	0.33	and	0.14	ppm	for	the	noise	and	24	

interference	error	(assuming	that	the	accuracy	is	bounded	by	the	calculated	25	

interference	error).	The	actual	precision	for	ocean	data	becomes	worse	as	the	26	

signal-to-noise	increases	or	the	calculated	precision	decreases	below	0.25	ppm	for	27	

reasons	that	not	well	understood.		A	typical	land	measurement	(both	nadir	and	28	

glint)	is	found	to	have	a	precision	and	accuracy	of	approximately	0.75	ppm	and	0.65	29	

ppm	respectively	as	compared	to	the	calculated	precision	and	accuracy	of	30	
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2	

approximately	0.36	ppm	and	0.2	ppm.	However,	this	precision	includes	the	effects	of	1	

synoptic	variability	in	the	total	column	that	could	be	as	high	as	0.5	ppm	during	the	2	

summer	drawdown	period.	The	accuracy	is	likely	related	to	interferences	such	as	3	

aerosols	or	surface	albedo	and	is	a	lower	bound	as	it	is	evaluated	by	comparing	4	

gradients	in	OCO-2	estimates	of	XCO2	to	expected	gradients	across	the	region	and	5	

not	by	direct	comparison	to	well-calibrated	XCO2	measurements	from	the	ground	6	

network.		7	

	8	

1.0 Introduction	9	

	10	

Variations	of	total	column	CO2	(XCO2)	resulting	from	photosynthesis	and	11	

respiration	in	tropical	forests	(e.g.	Parazoo	et	al.	2013),	urban	emissions	(e.g.	Kort	et	12	

al.,	2012)	or	tropical	fires	(e.g.	Bloom	et	al.,	2016)	range	from	2	–	5	ppm.	13	

Consequently,	in	order	to	use	space-based	measurements	of	XCO2	to	infer	fluxes	or	14	

properties	of	the	processes	controlling	these	variations,	uncertainties	in	XCO2	15	

should	ideally	be	much	much	smaller	than	this	variability	(Miller	et	al.	2007).	The	16	

Orbiting	Carbon	Observatory-2	(OCO-2)	was	launched	in	July	2014,	to	measure	the	17	

atmospheric	column	averaged	carbon	dioxide	(CO2)	dry	air	mole	fraction,	XCO2	with	18	

the	precision,	accuracy,	and	coverage	needed	to	quantify	variations	on	regional	19	

scales	at	monthly	intervals.		These	measurements	are	being	used	to	investigate	the	20	

underlying	carbon	cycle	processes	controlling	atmospheric	CO2.		The	radiative	21	

transfer	and	XCO2	estimation	(or	retrieval)	algorithms	(Boesch	et	al.	2006;	2011;	22	

Connor	et	al.	2008;	O’Dell	et	al.,	2012)	were	developed	and	tested	using	observed	23	

radiances	from	the	Japanese	TANSO	GOSAT	instrument	(Kuze	et	al.	2009;	Yoshida	et	24	

al.	2011),	which	measured	similar	spectral	regions	as	the	OCO-2	mission.		These	25	

algorithms	also	allowed	extensive	evaluation	of	quality	flags	and	metrics	needed	to	26	

reject	estimated	XCO2	values	which	were	clearly	spurious,	likely	because	of	poorly	27	

estimate	values	for	aerosols,	clouds,	surface	albedo	or	surface	pressure	(Crisp	et	al.,	28	

2012;	Mandrake	et	al.,	2013).		In	this	paper	we	evaluate	the	calculated	uncertainties	29	

due	to	noise	and	interferences	in	the	OCO-2	data	product	(Version	7).				30	
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Our	approach	follows	the	methodology	described	in	Boxe	et	al.	[2010]	and	Kuai	1	

et	al.		[2013]	in	which	variations	of	the	observed	trace	gas	over	a	small	“area”	are	2	

compared	to	the	calculated	errors.	Figure	1	shows	the	distribution	of	latitudinal	3	

gradients	in	XCO2	over	the	ocean	and	over	North	America	based	on	the	“high	4	

resolution”	Carbon	Tracker	model	(e.g.	Peters	et	al.	,	2007)	with	~100	km	spatial	5	

resolution.	This	distribution	is	calculated	by	differencing	XCO2	from	adjacent	model	6	

grid	points,	as	a	function	of	latitude,	using	all	modeled	XCO2	values	in	July	2015.	We	7	

find	that	the	root-mean-square	(RMS)	value	of	these	gradients	is	approximately	0.3	8	

ppm/100	km	during	the	summer	and	~0.1	ppm/100	km	during	November.	Keppel-9	

Aleks	[2011,	2012]	also	found	North	American	summertime	gradients	in	XCO2	10	

between	0.1	ppm/100	km	to	0.3	ppm/100	km	using	ground	based	total	column	data	11	

and	measured	wind	speeds.	In	addition,		these	studies	found	synoptic	variability	12	

could	change	XCO2	values	by	up	to	0.5	ppm	over	the	study	time	period	in	a	random	13	

manner		(Figure	5	in	Keppel-Aleks	[2011]).	In	contrast,	Figures	1a	and	1b	show	that		14	

typical	variations	in	the	gradients	over	the	ocean	should	be		less	than	that	of	land,	15	

between	~0.1	ppm/100	km	to		0.2	ppm/100	km.	While	in	situ	measurements	[e.g.	16	

Wofsy	et	al.,	2011]	and	model	data	do	show	variations	in	XCO2	that	are	sometimes	17	

larger	than	0.2	ppm/100	km	we	would	expect	that	these	variations	do	not	represent	18	

typical	XCO2	gradients,	especially	since	the	total	column	of	CO2	integrates	the	effects	19	

of	many	sources	and	sinks	from	hundreds	to	thousands	of	kilometers	away	from	the	20	

observation	[e.g.	Keppel-Aleks	et	al.	,	2011].	Because	the	expected	variability	in	21	

XCO2	from	models,	ground-based	data,	and	in	situ	measurements	are	comparable	or	22	

less	than	the	calculated	OCO-2	uncertainties,	we	can	compare	the	observed	23	

variability	of	XCO2	from	OCO-2	data	within	a	small	region,	covering	an	orbit	track	24	

that	spans	100	km	in	latitude,	to	evaluate	the	magnitude	and	character	of	their	25	

corresponding	calculated	uncertainties.	26	

	27	

2.0 Overview	of	OCO-2	data	28	

	29	
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The	OCO-2	instrument	measures	radiances	in	the	molecular	oxygen	(O2)	A-band	1	

(0.765	microns),	the	“weak”	CO2	band	at	1.61	microns	and	the	“strong”	CO2	band	at	2	

2.06	microns.		The	OCO-2	instrument	is	an	imaging	spectrometer	that	collects	with	8	3	

samples,	or	“spatial	footprints”	across	a	narrow	(0.8-degree)	swath	track	observes	4	

near	the	“glint	spot”	where	sunlight	is	specularly	reflected	by	the	surface.	5	

Observations	are	taken	in	three	different	modes,	(1)	“Nadir”,	where	the	space-craft	6	

points	the	instrument’s	aperture	at	the	ground	directly	downward	along	the	orbit	7	

track,	(2)	“Glint,”	where	the	space	craft	points	instrument’s	aperture	near	the	“glint	8	

spot”	where	sunlight	is	specularly	reflected	by	the	surface,	near	the	specular	9	

reflection	point	for	sunlight,	and	(3)	Target,	where	the	space-craft	points	the	10	

instrument	aperture	at	a	stationary	surface	target,	such	as	a	validation	site	or	city.			11	

Nadir	observations	usually	return	useful	measurements	only	over	land.		Glint	12	

observations	return	useful	data	over	both	land	and	ocean.	Here,	we	discriminate	13	

land-glint	and	ocean	glint	observations	because	they	have	different	error	statistics.		14	

We	do	not	evaluate	Target	data	in	this	analysis	due	to	spurious	statistics	that	are	15	

observed	with	the	Target	data.		16	

	As	discussed	in	Boesch	et	al.	[2006];	Connor	et	al.		[2008]	and	O’Dell	et	al.		[2012	17	

and	references	therein]	total	column	estimates	of	XCO2,	are	derived	from	OCO-2	18	

observed	radiances	using	a	Bayesian	optimal	estimation	approach	that	depends	on	19	

CO2,	all	the	geophysical	parameters	or	interferences	that	affect	the	radiances	in	20	

these	bands,	and	a	priori	statistics	of	the	atmosphere	and	these	interferences.		21	

We	use	version	7	of	the	OCO-2	data,	the	first	OCO-2	product	distributed	for	22	

general	users.	These	data,	like	those	described		for	GOSAT	data	in	Wunch	et	al.	23	

[2011],	are	bias	corrected	based	on	comparisons	between	OCO-2	and	total	column	24	

measurements	from	the	ground-based	Total	Carbon	Column	Observing	Network	25	

(TCCON).	Data	quality	is	evaluated	using	a	variety	of	metrics	that	depend	on	the	26	

estimated	cloud,	aerosol,	and	surface	properties,	convergence	and	known	statistics	27	

of	the	retrieved	CO2	values	(e.g.	Mandrake	et	al.	,	2013).	Data	quality	flags	are	given	28	

as	“warn	levels”	with	values	ranging	from	0	(best)	to	20	(worst).		Data	with	lower	29	

warn	levels	are	more	likely	to	represent	the	statistics	of	the	observed	CO2	whereas	30	
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data	with	higher	warn	levels	likely	or	are	too	strongly	affected	by	interfering	effects.	1	

The	warn	levels	are	primarily	evaluated	empirically;	for	these	reasons	we	2	

conservatively	use	only	data	with	warn	levels	of	10	or	smaller	to	ensure	that	the	3	

corresponding	errors	are	likely	well	characterized:	4	

http://disc.sci.gsfc.nasa.gov/OCO-2/documentation/oco-2-5	

v7/OCO2_XCO2_Lite_Files_and_Bias_Correction_0915_sm.pdf.			6	

	7	

	8	

3.0 Evaluation	of	Uncertainties	9	

	10	

3.1 Overview	of	Error	Analysis	and	Methodology			11	

We	evaluate	the	uncertainties	of	the	XCO2	observations	by	examining	the	12	

variations	of	XCO2	within	small	neighborhoods	of	approximately	10.5	km	by	100	km	13	

in	size.	After	warn	level	filtering,	this	“small	neighborhood”	test	set	is	composed	of	14	

approximately	1.5	million	Land-Nadir	soundings,	1.0	million	Land-Glint	soundings,	15	

and	5.0	million	Ocean-Glint	soundings.	Each	neighborhood	contains	at	least	50	16	

soundings,	with	roughly	190	soundings	per	neighborhood	on	average,	and	17	

approximately	39,000	small	neighborhoods	in	total	across	the	three	modes.	18	

stretching	from	approximately	30S	to	30N.	The	strict	filtering	used	in	this	analysis	19	

(Warn	Levels	<=	10),	and	the	need	for	at	least	50	measurements	per	bin	limits	this	20	

analysis	to	latitudes	between	30S	to	30N,	primarily	over	drier,	sub-tropical	regions	21	

over	land	but	no	obvious	preferential	distribution	over	the	ocean	(not	shown).		22	

As	discussed	in	[O’Dell	et	al.,	2012],	a	CO2	profile	is	simultaneously	estimated	23	

with	all	other	geophysical	parameters	that	affect	the	observed	radiance	such	as	24	

aerosols,	albedo,	and	surface	pressure.		The	“column-averaged	dry	air	mole	fraction”	25	

of	CO2	or	XCO2	is	then	calculated	by	applying	the	column	operator	[e.g.	Connor	et	al.,	26	

2008;	Worden	et	al.,	2015]	to	the	estimated	CO2	profile.	As	discussed	in	Rodgers	27	

[2000],	Worden	et	al.		[2004],	Connor	[2008],	and	Bowman	et	al.	[2006],	when	this	28	

non-linear	retrieval	converges	to	a	solution,	the	estimated	XCO2	can	be	written	as:	29	

	30	
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! = !# + %&'(( ( − (* + %&'(+ + − +* + %&,- + %&, ./0// 		 (1)	1	

	2	

where	! 	is	the	estimated	total	column	for	CO2,	!*	is	the	a	priori	value	used	to	help	3	

regularize	the	retrieval,	the	vector	x	is	the	“true”	CO2	profile	in	units	of	volume	4	

mixing	ratio	(VMR),	discretized	onto	the	forward	model	atmospheric	pressure	grid	5	

used	to	calculate	the	transfer	of	radiation	needed	to	model	the	observed	radiance.		6	

The	xa	is	the	a	priori	for	the	CO2	profile.		The	vector	“y”	contains	all	the	other	7	

parameters	that	are	simultaneously	estimated	with	x	such	as	aerosol	properties,	8	

surface	albedo,	surface	pressure.	The	vector	“n”	is	the	actual	noise	in	the	radiance.	9	

The	quantities	x,	y,	and	n	are	not	known	exactly,	only	their	statistical	properties	can	10	

be	estimated.	The	vector	“h”	is	the	column	operator	which	maps	a	profile	on	the	11	

pressure	grid	defined	by	“x”	into	a	dry	air	total	column.		The	averaging	kernel	matrix	12	

A	describes	the	sensitivity	of	the	estimate	to	each	retrieved	parameter	[Rodgers,	13	

2000].	In	equation	1	the	averaging	kernel	matrix	is	composed	of	two	parts,	Axx	and	14	

Axy,	described	by:	15	

	16	

' =
'11 '12
'21 '22

	 	 	 	 	 	 	 	 	 (2)	17	

	18	

For	example	Axx	describes	the	sensitivity	(or	3(3()	of	the	estimated	CO2	on	each	level,	19	

x,	 to	 its	 true	 value,	whereas	Axy	 describes	 the	 sensitivity	 of	 the	 estimated	 CO2	 on	20	

each	 level,	 x,	 to	 all	 other	 simultaneously	 estimated	 parameters,	 e.g.,	 aerosols,	 etc.	21	

The	matrix,	“G,”	is	the	gain	matrix,	,	which	is	the	derivative	of	the	estimated	CO2	on	22	

each	 level,	 x,	 to	 the	 observed	 radiance,	 “L”	 (or	 G	 =	3(
34
).	 The	 matrix,	 “K,”	 is	 the	23	

Jacobian,	or	sensitivity	of	the	observed	radiance	to	a	parameter	(e.g.	K	=	34
3(
).	The	last	24	

term,	 δ,	 describes	 the	 error	 in	 all	 parameters	 that	 are	 not	 estimated	 for	 this	25	

retrieval,	 but	 are	 assumed	 constant,	 such	as	 absorption	 coefficients	or	 instrument	26	

functions	(e.g.	Connor	et	al.,	2008).	The	mean	CO2	column	is	written	as:	27	

	28	
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!56*- = !# + %& 7
8

'9 (9 − (*8
9:7 + 7

8
%& '(+

9 +9 − +*8
9:7 +1	

																			7
8

%&,9(-98
9:7 + ./,>0/,>)/,> 		 	 	 	 	 	 (3)	2	

	3	

where	N	is	the	number	of	observations	within	the	small	area	and	for	simplicity	we	4	

assume	the	column	operator	h	is	constant	across	the	domain.	5	

	6	

For	the	next	three	sections,	we	test	the	following	hypotheses	regarding	the	observed	7	

distributions	within	the	collection	of	“small	neighborhoods”	and	their	calculated	8	

uncertainties:			9	

	10	

H1:	Uncertainties	within	a	small	area	are	primarily	due	to	random	noise	11	

H2:	Uncertainties	are	correlated	12	

H3:	Uncertainties	within	a	small	area	are	described	by	a	slowly	varying	bias	13	

(consistent	with	the	expected	effects	of	interference	error).	14	

	15	

We	look	at	the	variability	with	respect	to	the	neighborhood	mean	in	two	ways:		(1)	16	

for	small	neighborhoods;	the	predicted	errors	for	a	neighborhood	are	averaged	17	

from	the	observations	that	comprise	that	neighborhood,	making	the	statistics	18	

technically	a	sum	of	Gaussians,	and	(2)	the	variability	with	respect	to	the	19	

neighborhood	mean,	sorted	by	predicted	error	and	aggregated	over	many	20	

neighborhoods;	the	statistics	in	this	case	should	be	Gaussian,	however	the	locality	of	21	

the	analysis	is	somewhat	reduced.	22	

	23	

3.2	H1:	Error	due	to	noise	24	

	25	

	 To	evaluate	whether	measurement	noise	in	the	radiances	is	the	primary	26	

factor	driving	variability	within	a	small	area	we	assume	that	the		terms	Axy(yj-ya)	27	

and	systematic	errors	Ki,jδi,j	do	not	vary.	Based	upon	these	approximations,	the	28	

difference	between	an	observation	and	its	mean	is	given	by:	29	
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	1	

@ABC − @56*- = 	DEFG = D@HIJ + ,ABC-ABC −
K
L

,9-98
9 	 	 	 	 (4)	2	

	3	

where	DRSTU = %&'(VEFG − VWX#Y)	and	is	the	difference	between	the	individual	4	

“true”	XCO2	and	the	mean	of	the	“true”	XCO2	values	within	the	neighborhood.	5	

Assuming		the	measurement	noise	is	spatially	uncorrelated,		the	variance	within	the	6	

small	neighborhood	is		[e.g.	Bowman	et	al.	,	2006]	is:	7	

	9	

y*z !EFG − !WX#Y = {EFGU = {RSTUU + 	{YE|GXU +	 K
L}

{~UL
~:K −	 U

L
{�U		 	 (5)	8	

	10	

where	σ2noise		=	,.ÄÅ,.Ç		is	the	measurement	uncertainty	due	to	noise.	The	{RSTU	is	11	

the	variability	of	the	true	XCO2	within	the	small	neighborhood.		The	Sk	is	the		12	

spectral	instrumental		noise	covariance		and	is	calculated	during	calibration	of	the	13	

instrument.	The	individual	σnoise	values	are	provided	for	each	measurement	in	the	14	

OCO-2	product	files.	For	large	N,	Equation	5	is	approximately	equal	to:	15	

	{RSTUU + 	{YE|GXU .	16	

We	next	evaluate	these	uncertainties	using	two	approaches.		In	the	first	17	

approach	we	gather	all	observations	that	have	approximately	the	same	calculated	18	

measurements	uncertainty,		σ2noise	,	(to	within	0.01	ppm)		as	provided	in	the	OCO-2	19	

product	files	and	compare	to	the	actual	variability	of	these	observations.	The	steps	20	

for	this	comparison	are:	21	

	22	

1) Calculate	the	DEFG	or	difference	between	an	observation	and	its	mean	23	

within	a	small	neighborhood	as	shown	in	Equation	4.	24	

2) Collect	all	of	the	DEFG	values	from	all	neighborhoods	used	in	this	analysis	25	

whose	corresponding	σnoise	values	(measurement	uncertainty)	are	the	26	

same	to	within	0.01	ppm	and	bin	them	as	a	function	of	σnoise.	There	are	27	

typically	about	1000	observations	per	σnoise	bin.		28	
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9	

3) Compare	the	standard	deviation	of	the	collection	of	DEFGvalues	within	1	

each	bin	to	the	expected	standard	deviation	due	to	noise	or,	σnoise.	Based	2	

on	Equation	5	we	should	expect	to	get	a	linear,	one-to-one	relationship	if	3	

the	dominant	parameter	affecting	the	variability	within	a	small	4	

neighborhood	is	noise.			5	

	6	

The	results	of	these	comparisons	for	land-nadir,	land-glint,	and	ocean-glint	7	

observations	are	shown	in	the	upper	left	panels	of	Figures	2,	3,	and	4	respectively.		8	

These	results	show	the	calculated	measurement	error	has	skill,	i.e.		there	is	a	linear	9	

relationship	between	calculated	and	actual	error.	However,	over	land	the	observed	10	

random	variability	is	approximately	0.4	ppm	larger	than	the	variability	expected	11	

from	noise.	Synoptic	variations	in	XCO2	could	potentially	explain	much	of	this	extra	12	

0.4	ppm	however	other	sources	of	variability	could	be	due	to	the	strong	non-13	

linearities	in	the	retrieval	[e.g.	Kulawik	et	al.,	2008]	or	local	variability	between	the	14	

true	and	a	priori		in	the	interferences,	or	non-retrieved	parameters.	Over	the	ocean	15	

there	appears	to	be	an	even	stronger	one-to-one	relationship	between	the	16	

calculated	uncertainty	and	the	actual	uncertainty	except	for	calculated	uncertainties	17	

less	than	approximately	0.25	ppm	which	show	a	strong	inverse	relationship.	We	18	

find	that	these	observations	(not	shown)	tend	to	occur	in	the	tropics	in	cloudy	19	

regions	and	that	the	observations	tend	to	have	very	high	signal-to-noise	ratios.				20	

	 We	next	test	whether	the	calculated	measurement	noise	is	a	useful	value	for	21	

predicting	the	expected	distribution	of	observations	within	a	neighborhood.	22	

Because	each	DEFG	is	drawn	from	a	distribution	with	a	different	variance,	we	treat	23	

the	sample	of	each	set	of	observations,		 DK, DU, … DL ,	as	being	drawn	from	an	24	

uncorrelated	distribution	with	individual	variances	{EFGU .	Accordingly,	the	variance	25	

of	this	sample	should	be	the	average	of	the	individual	variances	{EFGU :	26	

	27	

y*z|[@ABC − @56*-]|| = DK, DU, …	DL = 7
8

Ö9J8
9 			 	 	 (6)	28	

	29	
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10	

The	top	right	panel	of	Figure	1	shows	a	comparison	of	the	observed	variance	of	the	1	

XCO2	distributions		(using	the	left	side	of	Equation	6)	within	each	neighborhood	2	

(black	circles)	versus	the	expected	variance		in	XCO2	using	the	right	side	of	Equation	3	

6.	Each	black	symbol	represents	a	single	neighborhood.	In	contrast	to	the	top	left	4	

panel	of	Figure	1,	this	result	suggests	that	the	measurement	error	has	no	skill	in	5	

predicting	the	observed	variance	of	XCO2	within	a	neighborhood.			6	

We	next	test	whether	the	observed	variance,	versus	that	due	to	measurement	7	

noise	or	sampling,	explains	the	upper	right	panel	of	Figures	2,	3,	and	4.		To	perform	8	

this	test,	we	perform	the	following	steps:	9	

	10	

1) Within	each	neighborhood,	replace	the	calculated	measurement	error	with	11	

the	“actual”	measurement	error	as	shown	by	the	solid	red	line	in	the	upper	12	

left	panel	of	Figures	2,	3,	and	4,	for	each	observation.	13	

2) Create	a	simulated	distribution	of	observations	based	on	this	new	14	

uncertainty.	15	

3) Randomly	sample	(or	take)	one	of	these	observations	à	label	this	the	16	

“modeled”	observation.	17	

4) Repeat	steps	1-3	for	all	observations	in	the	neighborhood.	18	

5) Calculate	the	variance	of	this	“modeled”	set	of	observations	for	each	19	

neighborhood.	20	

	21	

The	red	dots	in	Figures	2b,	3b,	and	4b	show	the	modeled	distributions	using	the	22	

steps	discussed	above.	The	modeled	distribution	is	more	consistent	with	the	mean	23	

of	the	observed	distribution	relative	to	the	one-to-one	line.	However,	it	is	clear	from	24	

this	simulation	that	errors	due	to	random	noise	and	sampling	do	not	explain	the	25	

observed	variance	for	each	neighborhood	although	the	distribution	of	variances	for	26	

the	ocean	show	much	better	agreement	relative	to	the	land	distributions.		27	

	 	28	

3.3	H2:	Uncertainties	are	correlated	29	

	30	
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11	

We	next	test	whether	observed	correlations	in	the	data	could	explain	the	1	

distributions	of	the	data	within	a	neighborhood.	Figures	5	shows	the	joint	2	

distribution	of	the	XCO2	anomaly	and	a	0.3	second	lagged	anomaly	in	a	3	

neighborhood.	If	the	data	were	uncorrelated	then	the	joint	distribution	should	be		4	

circular;	the	asymmetric	distribution	therefore	implies	that	the	errors,	as	5	

empirically	described	by	the	differences,	are	correlated.		Figures	6a	and	6b	show	6	

that	autocorrelation	is	observed	both	in	time	for	measurements	made	on	the	order	7	

of	1	second	of	each	other,	and	with	respect	to	the	spatially	adjacent	“footprints,”	the	8	

8	simultaneous	measurements	made	by	the	OCO-2	instrument	at	each	time.		The	9	

range	of	correlations	for	the	different	observation	types,	land	nadir,	land	glint,	and	10	

ocean	glint	are	0.45,	0.43,	and	0.28	as	a	function	of	footprint	and	0.31,	0.34,	and	0.24	11	

as	a	function	of	time.		12	

In	order	to	test	whether	these	observed	correlations	could	explain	the	13	

distributions	shown	in	Figures	2,	3,	and	4,	we	conservatively	use	a	correlation	14	

coefficient	of	0.7	for	all	observations	(an	extreme	case).	We	then	use	the	following	15	

procedure,	building	on	the	steps	described	in	the	previous	section.	16	

1) Within	each	neighborhood	replace	the	calculated	measurement	error	with	17	

the	“actual”	measurement	error	as	shown	in	the	upper	left	panels	of	Figures	18	

2,	3,	and	4	for	an	observation	19	

2) Starting	with	the	first	observation	(in	time)	within	a	neighborhood	for	20	

Footprint	#1,	sample	a	value	for	the	observation	from	the	distribution	of	21	

“actual”	measurement	errors.	Label	this	the	“modeled”	observation.	22	

3) For	all	subsequent	observations	in	time	for	Footprint	#1,	sample	each	23	

“modeled”	observation	from	a	distribution	that	is	correlated	with	the	24	

modeled	observation	at	the	previous	time	step	and	has	a	variance	25	

corresponding	to	the	“actual”	measurement	error.	26	

4) For	observations	in	Footprints	#2-8,	sampling	each	modeled	observation	27	

from	a	distribution	correlated	with	the	modeled	observation	at	the	same	28	

time	step	in	the	previous	(adjacent)	footprint,	again	with	a	variance	29	

corresponding	to	the	“actual”	error.	30	
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5) Calculate	variance	of	this	“modeled”	set	of	observations,	for	each	1	

neighborhood.	2	

	3	

As	can	be	seen	in	the	lower	left	panels	of	Figures	2,	3,	and	4,	adding	correlations	to	4	

the	data	makes	the	comparison	worse	because	the	modeled	distributions	become	5	

much	narrower	relative	to	the	modeled	distributions	in	the	upper	right	panels	of	6	

these	figures.		Our	conservative	choice	of	a	0.7	correlation	between	observations	at	7	

adjacent	times	and	footprints	illustrates	this	effect	clearly.	We	therefore	conclude	8	

that	while	correlations	are	empirically	observed	in	the	data,	they	cannot	completely	9	

explain	the	observed	distributions	within	the	small	neighborhoods.	10	

	11	

3.4	H3:	Uncertainties	within	a	small	area	are	characterized	as	a	slowly	varying	bias.	12	

	13	

	 We	next	examine	whether	“non-random”	uncertainties	could	explain	the	14	

observed	distributions	in	the	upper	right	panels	of	Figures	2,3,	and	4.		For	example,	15	

as	shown	in	Equation	(1),	the	jointly	retrieved	parameters	(y	–	ya)	might	remain	16	

constant	across	a	neighborhood	but	the	Averaging	kernel	associated	with	this	term,	17	

which	is	given	by	'12 =
Ü1
Üá

Üá
Ü2
= ,.2,	can	vary	across	a	neighborhood	as	the	pointing	18	

angle	varies.	The	effect	of	non-retrieved	parameters	such	as	instrument	effects	or	19	

spectroscopy	on	the	estimate	can	vary	for	the	same	reason.		20	

	 Figure	7	shows	the	variation	of	XCO2	across	one	of	the	ocean	neighborhoods	21	

for	all	8	OCO-2	footprints	(denoted	by	“FP”).	The	right	panel	shows	the	observed	22	

distribution	in	black	relative	to	the	mean	XCO2	of	the	neighborhood.	For	reference,	23	

the	red	dashed	line	in	the	right	panel	indicates	the	expected	distribution	if	only	24	

random	noise	explained	the	variability.	The	slope	shown	in	Figure	7	represents	an	25	

extreme	case	but	demonstrates	that	observations	can	pass	the	set	of	quality	flags	26	

but	still	show	this	unlikely	behavior	over	the	ocean.		Figure	8	shows	the	distribution	27	

of	all	slopes	across	all	land-nadir	neighborhoods	used	in	this	study	and	different	fits	28	

(Gaussian,	Lorentz,	Laplace)	to	the	distribution.	The	Laplace	distribution	provides	29	
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the	best	overall	fit	so	we	use	its	functional	form	as	a	simple,	convenient	description	1	

of	the	shape	of	the	sharply	peaked	slope	distribution.		More	complex	models	such	as	2	

Gaussian	mixtures	might	also	describe	the	shape	of	this	distribution	of	slopes	as	3	

drawn	from	several	distinct	“populations”	of	neighborhoods,	but	we	leave	such	an	4	

analysis	to	future	work.	The	RMS	of	the	distribution	is	approximately	1.28.	which	is	5	

much	larger	than	expected	variations	in	XCO2	(e.g.	Figure	1	and	Keppel-Aleks	et	al.	6	

[2012]).		7	

For	land-nadir,	land-glint,	and	ocean-glint	data	the	variance	of	the	slopes	is	given	8	

by	1.28	ppm/100	km,	1.12	ppm	/	100	km,	and	0.48	/	100km	respectively.	To	test	9	

whether	these	slowly	varying	changes	explains	the	distribution	of	XCO2	within	small	10	

neighborhoods	we	follow	the	same	steps	described	in	Section	3.2	and	3.3	but	now	11	

add	another:	12	

	13	

1) Within	each	neighborhood	replace	the	calculated	measurement	error	with	14	

the	“actual”	measurement	error	as	shown	in	the	upper	left	panels	of		Figures	15	

2,	3,	and	4	for	an	observation	16	

2) Starting	with	the	first	observation	(in	time)	within	a	neighborhood	for	17	

Footprint	#1,	sample	a	value	for	the	observation	from	the	distribution	of	18	

“actual”	measurement	errors.	Label	this	the	“modeled”	observation.	19	

3) For	all	subsequent	observations	in	time	for	Footprint	#1,	sample	each	20	

“modeled”	observation	from	a	distribution	that	is	correlated	with	the	21	

modeled	observation	at	the	previous	time	step	and	has	a	variance	22	

corresponding	to	the	“actual”	measurement	error.	23	

4) For	observations	in	Footprints	#2-8,	sampling	each	modeled	observation	24	

from	a	distribution	correlated	with	the	modeled	observation	at	the	same	25	

time	step	in	the	previous	(adjacent)	footprint,	again	with	a	variance	26	

corresponding	to	the	“actual”	error.	27	

5) Adjust	each	modeled	observation	with	a	linear	function	where	the	slope	of	28	

the	linear	function	is	randomly	chosen	from	the	fitted	Laplace	distribution	to	29	

the	slopes	(e.g.,	the	Laplace	function	shown	in	Figure	8)	30	
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6) Calculate	variance	of	this	“modeled”	set	of	observations,	for	each	1	

neighborhood.	2	

	3	

Figures	2,	3,	and	4	(lower	right	panels)	show	the	best	overall	agreement	4	

between	modeled	distributions	of	XCO2	relative	to	the	mean	and	the	expected	5	

distributions	based	on	observations,	demonstrating	that	a	slowly	varying	bias	is	6	

needed	to	best	explain	the	observed	distributions	within	a	grid	of	approximately	7	

100	km	x	10	km.	8	

The	expected	“true”	variability	across	a	typical	100	km	neighborhood	is	~0.1	to	9	

~0.3	ppm	(e.g.	Figure	1).	Each	typical	observation	has	a	random	error	related	to	10	

noise	and	a	systematic	error	that	is	in	principal	bounded	by	the	calculated	11	

interference	error	(e.g.	Boxe	et	al.	,	2010)	and	is	approximately	0.2	ppm.	The	100	km	12	

x	10.5	sizes	for	the	small	neighborhoods	used	for	this	analysis	is	a	fortuitous	size	13	

because	the	expected	latitudinal	variability	is	approximately	the	same	or	smaller	as	14	

the	mean	interference	error	(Figure	1).	Within	a	typical	grid	box	an	OCO-2	observed	15	

measurement	over	land	is	within	1.28	/	2,	or	~0.65	ppm	of	the	mean	XCO2	value.		16	

For	these	reasons,	and	we	expect	that	a	typical	observation	over	land	has	at	least	a	17	

systematic	error	of	at	least	0.65	ppm,	about	2	to	3	times	larger	than	the	calculated	18	

interference	error.	19	

	In	contrast,	the	observed	distributions	of	slopes	and	(mean	slope	of	0.48	ppm	/	20	

100	km	or	mean	error	of	0.24	ppm)	for	the	ocean	data	is	only	70%	larger	than	the	21	

mean	calculated	interference	error	of	0.14	ppm.		Because	the	distribution	of	ocean	22	

data	within	“bins”	(Figure	4,	upper	left	panel)	is	also	well	described	by	the	23	

calculated	random	error,	we	conclude	that	the	ocean	glint	data	is	reasonably	well	24	

characterized	by	its	calculated	uncertainties	for	this	size	of	a	grid	box,	except	for	25	

calculated	noise	(or	precision)	uncertainties	that	are	less	than	~0.25	ppm.			26	

We	find	no	relationship	between	the	distribution	of	slopes	for	a	neighborhood	27	

and	the	corresponding	mean	of	the	calculated	interference	error	suggesting	that	the	28	

calculated	interference	error	does	not	explain	the	observed	slope	within	a	29	

neighborhood,	in	contrast	to	the	measurement	error.		However,	there	is	a	30	
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correlation	between	the	slope	and	the	estimated	magnitude	of	interferences,	such	as	1	

aerosol	optical	depth,	surface	albedo,	and	surface	pressure.		For	example,	the	2	

correlation	between	the	slopes	of	land-glint	data	with	the	mean	uncertainty	in	the	3	

interferences	is	0.06	whereas	the	correlation	between	the	observed	slopes	in	XCO2	4	

and	similarly	calculated	observed	slopes	in	aerosol	optical	depth	is	0.37.	This	5	

correlation	suggests	that	the	observed	slow	variations	in	XCO2	across	a	6	

neighborhood	could	be	related	to	how	interferences	affect	the	XCO2	estimate	as	7	

OCO-2	takes	observations	across	a	neighborhood.	8	

	9	

4.0 Summary		10	

	11	

The	analysis	described	in	this	paper	uses	the	observed	XCO2	variability	across	12	

small	neighborhoods,	in	comparison	to	expected	variations,	to	evaluate	the	13	

precision	and	accuracy	of	the	XCO2	data.	We	find	that	the	precision	and	accuracy	of	a	14	

typical	ocean	measurement	is	approximately	0.35	and	0.2	ppm	respectively,	15	

consistent	with	the	calculated	errors	(assuming	that	the	accuracy	is	bounded	by	the	16	

calculated	interference	error	and	does	not	include	smoothing	error).		The	precision	17	

and	accuracy	of	a	typical	land	measurement	(both	nadir	and	glint)	is	approximately	18	

0.75	ppm	and	0.65	ppm.		These	values	can	be	compared	to	the	calculated	19	

measurement	and	interference	errors	of	approximately	0.36	ppm	and	0.2	ppm.	20	

Much	of	the	difference	between	the	observed	precision	and	calculated	measurement	21	

error	could	be	due	to	natural	synoptic	variability	in	XCO2	but	is	also	likely	due	to	22	

non-linearities	in	the	retrieval	or	random	components	of	interference	error.	The	23	

accuracy	is	estimated	from	observed	gradients	in	XCO2	of	approximately	1.28	ppm	/	24	

100	km	across	the	small	neighborhoods	used	in	this	analysis.	Natural	variability	can	25	

likely	explain	at	most	about	0.1	to	0.3	ppm	of	this	of	1.28	ppm.	The	accuracy	is	26	

estimated	as	being	at	least	half	the	value	of	this	slope	or	~0.65	ppm.	27	

This	0.65	ppm	estimate	for	the	accuracy	of	the	land	data	could	be	a	lower	bound	28	

because	it	is	based	on	observed	gradients	across	a	region	and	not	direct	29	

comparisons	against	TCCON,	although	the	OCO-2	data	are	bias	corrected	using	30	
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TCCON	data	(Wunch	et	al.		2011).	We	find	a	relationship	between	these	gradients	1	

and	interferences	such	as	aerosol	optical	depth	and	surface	albedo	suggesting	that	2	

these	interferences	are	the	cause	of	the	gradients.			3	

The	analysis	discussed	in	this	paper	can	be	applied	to	future	versions	of	the	4	

OCO-2	data	in	which	more	accurate	calculations	of	the	interferences	are	included	or	5	

additional	data	quality	flags	are	used	to	remove	spurious	individual	observations	or	6	

sets	of	observations.	For	example,	another	set	of	data	quality	flags	could	be	7	

developed	to	remove	observations	that	vary	too	much	over	a	region.	In	addition,	8	

Connor	et	al.		(2016,	submitted)	finds	that	other	instrumental	and	spectroscopic	9	

uncertainties	need	to	be	included	in	the	error	analysis	and	that	these	additional	10	

components	will	likely	have	a	random	and	systematic	component,	thus	possibly	11	

explaining	the	discrepancy	between	calculated	and	actual	uncertainties	discussed	12	

here.		A	future	study	in	which	the	calculated	uncertainties	discussed	in	Connor	et	al.		13	

(submitted)	repeats	the	steps	shown	in	this	paper	could	be	of	great	value	for	14	

explaining	the	observed	variations	across	the	small	neighborhoods	used	in	our	15	

analysis.		16	
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Figure	1:	Distribution	of	latitudinal	XCO2	gradients	as	calculated	by	the	high	resolution,	“Real	11	

Time”,	Carbon	Tracker	model	for	November	2015	(left	panel)	and	July	2015	(right	panel)	over	12	

North	America	and	the	nearby	oceans.	The	latitude	grid	is	1	degree	or	~110	km.	The	gradients	13	

are	re-scaled	to	100	km	for	comparison	to	the	XCO2	gradients	discussed	in	this	paper.	14	
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Figure	2:	Calculated,	observed,	and	modeled	uncertainties	for	Land-Nadir	observations.	Black	5	

circles	are	the	observed	distributions	and	red	circles	are	modeled	distributions	assuming	6	

sampling	and	random	error	(upper	right),	correlated	errors	(bottom	left)	and	correlated	plus	7	

trend	in	error	(bottom	right).	8	
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Figure	3:	Observed	and	modeled	distributions	for	Land-Glint	data	3	

	 	4	
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Figure	4:	Observed	and	modeled	distributions	for	Sea-Glint	data.	3	

	4	

	 	5	
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Figure	5:	Distribution	of	XCO2	values	between	time	steps	for	the	set	of	observations	from	each	5	

“small	neighborhood”	used	in	this	analysis.	6	

	7	
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Figure	6:	(Top)	Correlation	of	differences	across	pixels	between	observed	minus	mean	within	a	6	

neighborhood.	(Bottom)	correlation	between	observations	for	a	single	pixel.	7	

	8	
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Figure	7:		The	difference	between	XCO2	and	the	mean	value	for	one	of	the	small	neighborhoods	3	

(or	areas)	used	in	this	analysis.	The	left	panel	shows	the	differences	for	each	footprint	(FP),	4	

representative	of	one	of	the	OCO-2	observations.	The	right	panel	shows	the	observed	5	

distribution	(actual)	and	one	calculated	if	the	distributions	were	representative	of	the	6	

calculated	random	error.	7	
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Figure	8:		The	distributions	of	slopes	of	the	observed	XCO2	gradients	across	all	the	small	3	

neighborhoods	corresponding	to	Land	Nadir	observations.		4	

	5	

	6	
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